

Back Side

© Patrick Sullivan

Radius of the inside corners is not structurally important. Use whatever radius appeals to you. I used a $1^{\prime \prime}$ radius. These curves can be cut with a Forstner drill bit.

If you are using a saber saw, I recommend cutting the corner curves with a Forstner bit for uniform round curves with no burning and no sanding.. If you are using a scroll saw, you should be able to cut fair curves of any radius without burning.

Multiply these dimensions by 2.54 to obtain measurements in centimeters

These drawings are half-size.
1 inch = 2 inches

The thickness of the table top material might vary somewhat. $0.75^{\prime \prime}$ is the minimum. If you are using slightly thicker material, the only change you need to make is to adjust the height of the blue shape below to sit flush with the top.

The hole shown is 2.25 ". However, it must fit your vacuum hose male end or adapter. These come in a variety of sizes.

If your table top is not $0.75^{\prime \prime}$, increase or decrease this $3.25^{\prime \prime}$ $3.25^{\prime \prime}$ to fit. overlapping each other 3 dimensions. If this is confusing, please review the video to see how they interconnect.

The blue shape shown in cut from a block of solid wood at least $3 / 4$ " thick, and preferably $1^{\prime \prime}$ thick. This forms the female part of the vacuum connection, and ideally should be tapered slightly. However, the male connector will often fit snugly enough in the untapered opening cut with a hole saw.

I recommend that you first test the fit in a piece of scrap to be sure you have exactly the right size hole saw.

o fit.

$$
2.5^{\prime \prime}
$$

Multiply these dimensions by 2.54 to obtain measurements in centimeters

Full Size Template
Just paste the blue shape above to a piece of $3 / 4-1$ " thick softwood and cut to the lines. Don't forget to adjust the center hole to fit your hose male end.
Ideally, taper this hole slightly to make a
little more solid fit.

1/4" cam clamp Rockler \#58244

Cam Actuated Fence

These drawings are half-size.
1 inch = 2 inches
Patrick Sullivan
(C) 2018

